For most homeowners, the garage also functions as the primary entrance to their house. With repetitive daily use, your garage door can experience normal wear and tear and require professional attention. The trained and experienced technicians at Kitsap can help you with any repair needs you may have and will expertly service any garage door brand or type.

You'll never ask yourself that question again. Just look at your phone to know for sure. Most smart garage door openers will tell you if it's open or shut. They'll send a message every time your garage door is opened or closed too, if you like. Electric garage door openers provide a huge amount of convenience and safety. Imagine you're in a hurry, it's raining out, you pull out of the garage then press the button on your garage door opener remote. The garage door closes, and you didn't have to get out of your car.
The lucky-for-you-I-found-another-problem trick: Another trick is to suggest your automatic opener was damaged (or "compromised") by the additional load or shock presented by the failure of the spring(s). The plastic worm gear used in the most common openers (see above) wears normally over the years and tends to leave a lot of debris inside the opener housing. Removing the opener cover reveals a lot of plastic shavings that may be cited as "evidence" you need a new opener, when the gears are actually still serviceable. Nevertheless, you may have indeed worn out the gear if you repeatedly cycled the door with the opener despite having broken springs, which is possible if you have a very lightweight door.
Torsion springs are devices that lift most of the weight of a garage door so that the door can be opened manually or by an electric opener. The torsion principle is applied via an efficient and economical apparatus consisting of a torsion shaft under spring torsion, which turns lift drums, which wind cables attached to the door near the bottom. All of this apparatus is mounted over the top of the door. The energy stored is sufficient, in an uncontrolled release, to break things, hurt you, or perhaps even kill you. The same could be said of jacking up your car to change a tire, or mowing your lawn, or raising children, so it is not crazy to want to do this yourself.
Garage Door Installation – This includes the installation of a new garage door. Includes the door itself, the track, cables, springs, hinges, handles, locks and rollers. It is the complete service and installation of a new door. We inspect all the parts, make adjustments to fit your garage opening, and service all elements during the installation process. Plus, we check to ensure all parts are in proper working order after installed.
The "liability" angle: The flip side of "safety issue" is "liability". This is not used to directly sell you something; it is used to demean the cheaper alternative and prod you into buying a more expensive (and profitable) option. For example, you may be pressured into buying a whole new door, when you just need a new spring, by the salesman telling you he can't just replace the spring due to "liability" issues. Since product liability is a big burden on the garage door industry, and so many old doors (and especially automatic openers) are dangerous, this may be a genuine reason to accept a higher price.
A torsion spring counterbalance system consists of one or two tightly wound up springs on a steel shaft with cable drums at both ends. The entire apparatus mounts on the header wall above the garage door and has three supports: a center bearing plate with a steel or nylon bearing and two end bearing plates at both ends. The springs themselves consist of the steel wire with a stationary cone at one end and a winding cone at the other end. The stationary cone is attached to the center bearing plate. The winding cone consists of holes every 90 degrees for winding the springs and two set screws to secure the springs to the shaft. Steel counterbalance cables run from the roller brackets at the bottom corners of the door to a notch in the cable drums. When the door is raised, the springs unwind and the stored tension lifts the door by turning the shaft, thus turning the cable drums, wrapping the cables around the grooves on the cable drums. When the door is lowered, the cables unwrap from the drums and the springs are rewound to full tension.[7]

See the Sectional Overhead Garage Door catalog (PDF file) from the Prime-Line replacement hardware company. Their brochure Sectional Garage Door Torsion Spring Installation Instructions (PDF file, part number GD-12280) is brief but informative. Apparently you can only obtain their torsion springs as special order items through mom-and-pop type hardware stores like Ace and True Value, and not the big-box Home Depot and Lowes.


Stress and lifetime: Calculating the maximal stress in the wire is useful for estimating the lifetime. Using the formula above, the bending stress S in the spring wire is 32*238/(π*0.2253^3) = 212 Kpsi. The spring index C is D/d = 2.23 / 0.225 = 9.88. The Wahl correction factor is Kw = (4C-1)/(4C-4) + 0.615/C = 1.15. The Wahl-corrected stress is Kw * S = 1.15 * 212 Kpsi = 244 Kpsi. This predicts about a 10,000-cycle lifetime, which is the standard "cheap spring" configuration originally installed. Note that while this stress is proportional to the torque being applied, it is also in proportion to the inverse third-power of the wire size. Thus slightly heavier wire sizes (and suitably adjusted D and/or L) radically improve the expected cycle lifetime of the spring.
Stress and lifetime: Calculating the maximal stress in the wire is useful for estimating the lifetime. Using the formula above, the bending stress S in the spring wire is 32*238/(π*0.2253^3) = 212 Kpsi. The spring index C is D/d = 2.23 / 0.225 = 9.88. The Wahl correction factor is Kw = (4C-1)/(4C-4) + 0.615/C = 1.15. The Wahl-corrected stress is Kw * S = 1.15 * 212 Kpsi = 244 Kpsi. This predicts about a 10,000-cycle lifetime, which is the standard "cheap spring" configuration originally installed. Note that while this stress is proportional to the torque being applied, it is also in proportion to the inverse third-power of the wire size. Thus slightly heavier wire sizes (and suitably adjusted D and/or L) radically improve the expected cycle lifetime of the spring.
Resetting the drums, if needed: If the drums were incorrectly set in their old positions, one must reset both drums in new positions on the shaft. This is complicated by the presence of old dimples in the torsion shaft from previous setting(s), which must be avoided lest they improperly influence the new setting of the drums. To begin this process of resetting the drums, the door must first be lowered and resting level on the floor, the spring(s) must be in the unwound condition with their set-screws loosened, and the lift cables wrapped around the drums. If for some reason the door does not rest level on the floor, such as the floor being uneven, then insert temporary shims between the door bottom and the floor to bring the door up to level. Loosen the set-screws on the drums, and turn the torsion shaft to avoid the old dimples from the set-screws in the old drum position. Tighten the set-screw on the left drum (that is, on your left as you face the door from in the garage), creating a new dimple, and apply tension to its cable with the locking-pliers technique, enough tension to keep the cable taut but not enough to start to move the door up. Attach and wind the cable on the opposite (right) drum by hand until the cable is similarly taut, and set the screw, remembering that tightening the screw will tend to add a bit of extra tension to the cable. Both drums should now be fixed on the torsion shaft, with the cables about equally taut (listen to the sound when you pluck them like a guitar string) and the door still level on the ground. Setting the left drum first, and the right drum second, will allow you to take up any slack in the cable introduced by the left drum rotating slightly with respect to the torsion shaft as you tighten the set screws. This alignment and balance of the cables, drums, and door is critical to smooth operation and proper closing. If you have a single-spring assembly, the distance along the torsion tube from the spring cone to one drum is longer than to the other drum, which allows a bit more twist to one side than the other, and you may have to compensate with the setting of the drums.

Garage Door Service Co

×