When it comes to garage doors, Jarusewski’s Overhead Door Service Inc. is your premiere choice. We are true professionals and your satisfaction is key. Let us show you the quality of our garage doors and how you can improve both the look and value of your home or business. From the appearance of the door, right down to strength and durability, we’ve got a door for everyone.


Looking to repair your garage door opener? Common problems could range from issues with the remote or wall switch that control the garage door opener to more serious issues like a grinding noise coming from the opener itself. If you need help with repairing your garage opener, schedule a repair appointment today! We repair all major brands and have same-day availability in most markets, so we can get your garage door opener repaired and running smoothly.
We would definitely recommend Precision to anyone that needs garage door services! We were able to get a service appointment right away! Tom arrived and was very professional and courteous. He took the time to go over what repairs were needed and provided an estimate. He was ready to do the repairs right then and there and within a few hours, we had our garage door up and running like new! Thanks to Tom and Precision for a positive experience!
The parts, parts, parts trick: You might be told you need new rollers, cables, drums, bearings, etc., when you don't, or at highly inflated prices. Good questions to ask when first calling for service include, "How do I know you will only charge me for the parts I actually need?", and "If you don't have all the parts I need, what will you charge me to come back?"
Mechanical garage door openers can pull or push a garage door with enough force to injure or kill people and pets if they become trapped. All modern openers are equipped with “force settings” that make the door reverse if it encounters too much resistance while closing or opening. Any garage door opener sold in the United States after 1992 requires safety eyes—sensors that prevent the door from closing if obstructed. Force settings should cause a door to stop or reverse on encountering more than approximately 20 lbs (9.07 kg) of resistance. Safety eyes should be installed a maximum of six inches above the ground. Many garage door injuries, and nearly all garage door related property damage, can be avoided by following these precautions.
In order for you to find the right style door for your home, you need a tool that allows you to try out available options on a picture that approximates the look of your home. Using the Precision Door Designer, you'll easily create combinations of color, panel design and windows options that quickly educate you about the right style door for your home
Weight and cost: The 24-inch-long spring has a calculated weight of 8.4 lbs, not counting the winding cones. At less than $1/lb wholesale, and $3/lb retail for fabricated steel products, this spring should sell for about $8 to $25 (2005 prices) each, depending on the market and source. Since a pair is required, the expected cost for a pair is $16 to $50.
Clopay Garage doors featuring Intellicore insulation technology represent Clopay Garage doors featuring Intellicore insulation technology represent the ultimate smart choice for homeowners. Clopay Intellicore is proprietary polyurethane foam that is injected into a garage door expanding to fill the entire structure. The result is a door with incredible strength and durability. Its dense insulation also produces a quieter ...  More + Product Details Close
Measure springs only when relaxed: Measurements must be taken on a relaxed spring because the winding adds significant overall length while reducing the coiled diameter. If you have a paired design, and one is broken and one is intact, then don't try to measure the length of the intact spring with the door down. A wound spring has 7 or 8 turns adding to the overall length, and will therefore be about 2 inches longer than when relaxed. Measure the lengths of the pieces of the broken spring, which will be unwound, and add them together. As a check, one can measure the length of the intact spring after it is unwound in the procedure to follow below. Be sure also to observe whether the springs are originally of equal sizes, because it is quite possible that they are not.

Not only was the upward-lifting garage door and the electric garage door opener invented by Overhead Door Corporation’s founder C.G Johnson in the 1920s, but we also have a tradition in excellence for garage door repair, service and maintenance. Even with the most reliable products problems can arise and when they do it’s important to know who to contact to fix these issues while providing solutions to prevent future complications.
R-value describes the power of the insulation in your door. The higher the r-value, the stronger the insulation. Those doors will have better energy efficiency than doors that have a low r-value. Basic doors have an r-value of 0.0 with no insulation. The first step up gives you 1-3/8” insulation at a 6.5 rating. Next, a 1-3/8” thickness with Intellicore has a 12.9 r-value. The best option on the market is the 18.4 r-value, which has 2” Intellicore insulation.
Loosening or tightening the set-screws is the moment of most risk, since the end-wrench is a potential missile if you slip, and your hand is close to the cone. When the wrench is removed and only the rods are in place, it would seem that the worst that could happen is that the rod is flung out and the captive spring and cone rattle around, assuming you are keeping yourself clear of the rod's radial disk of rotation, and not leaning on the rod such as to fall into the apparatus were the rod to slip out of your grasp. The torsion shaft design has the virtue of capturing the mass of the spring and cones reliably on the shaft, preventing these parts from launching themselves as projectiles, even in an accident.
The typical electric garage door opener consists of a power unit that contains the electric motor. The power unit attaches to a track. A trolley connected to an arm that attaches to the top of the garage door slides back and forth on the track, thus opening and closing the garage door. The trolley is pulled along the track by a chain, belt, or screw that turns when the motor is operated. A quick-release mechanism is attached to the trolley to allow the garage door to be disconnected from the opener for manual operation during a power failure or in case of emergency. Limit switches on the power unit control the distance the garage door opens and closes once the motor receives a signal from the remote control or wall push button to operate the door.[3]

With hundreds of moving parts that are all required to work together, it's no surprise that garage doors may need occasional repair and maintenance. Garage door repair services are also required in emergency situations, like when the garage door won't operate and the car is trapped inside or you've accidentally backed into the door when it was closed. Whether it's a specific repair of your garage door opener, a broken spring that needs to be replaced, or a bent or rusted track, The Home Depot's local, licensed service providers can get the job done quickly and efficiently.
Some of the best garage door openers offer special features like a backup power source or a timer that automatically closes the door behind you at a predetermined time. While the door openers we reviewed vary in terms of power, noise and efficiency, they are all effective in the all-important task of letting you come and go with the simple push of a button. Here are the criteria we used to rank the top garage door openers:
I make no recommendations of, and have no connection to, any of the following suppliers. These are just those whom I have learned about from my Web searches, from correspondence with those sending email about their experiences, or directly from the suppliers. I have removed several contacts that were generating complaints to me from dissatisfied customers. I have added this list to this page due to all the email queries I was receiving daily asking where to obtain parts. If you are a supplier and would like to be added to the list, see my email address at the end of this page.
The most common grade of torsion springs have an expected life of about 10,000 cycles. The hardened and tempered steel experiences tremendous forces each time the door opens or closes. Gradually, the steel fatigues with each flexure, and eventually cracks and breaks, usually releasing its stored energy in an instant with a horrific "sproing" noise or bang. If you average about two car trips per day, opening and closing the door a total of 4 times daily when you come and go, then that expected life becomes 2500 days, or only about 7 years. If you have an automatic opener, then if you're like me, you tend to cycle the door even more frequently, and can expect the need for spring replacement even sooner. Moreover, my three-car garage has three doors, so on average I can expect a repair job every few years. Over a lifetime, it is very economical to do these repairs myself.
Most situations allow you to replace spring(s) without removing the assembly from the wall, if there is enough clearance in the surrounding garage structure at the ends of shafts. By unbolting the end bearing plates and removing the drums, you can run the springs down to the ends of the shaft to remove and replace the springs. This avoids the balancing act of holding a long, wobbly, heavy shaft while climbing up and down a ladder. This is how the professionals get the job done in a few minutes.
See the Sectional Overhead Garage Door catalog (PDF file) from the Prime-Line replacement hardware company. Their brochure Sectional Garage Door Torsion Spring Installation Instructions (PDF file, part number GD-12280) is brief but informative. Apparently you can only obtain their torsion springs as special order items through mom-and-pop type hardware stores like Ace and True Value, and not the big-box Home Depot and Lowes.
The first garage door opener remote controls were simple and consisted of a simple transmitter (the remote) and receiver which controlled the opener mechanism. The transmitter would transmit on a designated frequency; the receiver would listen for the radio signal, then open or close the garage, depending on the door position. The basic concept of this can be traced back to World War II. This type of system was used to detonate remote bombs. While novel at the time, the technology ran its course when garage door openers became popular. While the garage door remote control transmitter is low power and has limited range, its signal can be received by other, nearby, garage door openers. When two neighbors had garage door openers, then opening one garage door might open the neighbor’s garage door as well.
Given the complexity of a garage door and opener system, there are a variety of different areas something could go wrong. If your garage door shakes or is very loud during operation, the garage door closes all the way only to immediately open back up, the garage door opens slowly or closes too quickly, or the garage door opener and remote aren't working at all, you should seek help from a professional garage door repair specialist.
Just compare our total price—item price + tax (if applicable) + shipping&handling—to the total price of other Online stores. If you find a lower price, we will match the price and refund 10% of the difference. Call us at 1-877-357-Door (3667) today with your quote from a competitor. We will review the lower price while processing your order and make any necessary reductions before your order ships.
Thanks for considering our wide array of Overhead Door™ residential, commercial and industrial doors, openers, operators and accessories to complete your home, business or remodeling project. We are confident that you will find a door and opener product to meet your needs. After all, we lead the industry with our comprehensive selection of residential and commercial door systems.​​​​​​​​​​​​​ Overhead Door Corporation is a proud member of DASMA. ​ ​
If this manipulative, we-are-your-nanny business approach is truly in our best interests as consumers, then we shouldn't be allowed near ladders, lawn mowers, or power tools. Those products are just as hazardous and prone to misuse as torsion springs, yet no one thinks of them as forbidden. The only genuine difference is that torsion springs are a hazardous thing you need only rarely, while a lawn mower is a hazardous thing you need all the time.
With all the styles offered by Clopay®, many homeowners fall in love with multiple doors. To help you choose the best garage door for your home, Clopay® has developed a comprehensive buying guide, outlining styles, construction materials, insulation, wind resistance, automatic garage door openers and more. We also allow you to view different door styles on your home with our Door Imagination System. Simply upload your home or choose from a variety of sample homes with one-car, two-car, and three-car garages to design the best garage door for your home.
Resetting the drums, if needed: If the drums were incorrectly set in their old positions, one must reset both drums in new positions on the shaft. This is complicated by the presence of old dimples in the torsion shaft from previous setting(s), which must be avoided lest they improperly influence the new setting of the drums. To begin this process of resetting the drums, the door must first be lowered and resting level on the floor, the spring(s) must be in the unwound condition with their set-screws loosened, and the lift cables wrapped around the drums. If for some reason the door does not rest level on the floor, such as the floor being uneven, then insert temporary shims between the door bottom and the floor to bring the door up to level. Loosen the set-screws on the drums, and turn the torsion shaft to avoid the old dimples from the set-screws in the old drum position. Tighten the set-screw on the left drum (that is, on your left as you face the door from in the garage), creating a new dimple, and apply tension to its cable with the locking-pliers technique, enough tension to keep the cable taut but not enough to start to move the door up. Attach and wind the cable on the opposite (right) drum by hand until the cable is similarly taut, and set the screw, remembering that tightening the screw will tend to add a bit of extra tension to the cable. Both drums should now be fixed on the torsion shaft, with the cables about equally taut (listen to the sound when you pluck them like a guitar string) and the door still level on the ground. Setting the left drum first, and the right drum second, will allow you to take up any slack in the cable introduced by the left drum rotating slightly with respect to the torsion shaft as you tighten the set screws. This alignment and balance of the cables, drums, and door is critical to smooth operation and proper closing. If you have a single-spring assembly, the distance along the torsion tube from the spring cone to one drum is longer than to the other drum, which allows a bit more twist to one side than the other, and you may have to compensate with the setting of the drums.

We also offer garage door opener repair service. Many times, what appears to be a problem with your garage door is actually a problem with your garage door opener. Our professional technicians have experience with all major garage door opener brands, including the popular LiftMaster line of garage door openers. Whether your garage door opener is making too much noise, failing to turn on, moving too slowly or not opening or closing your door properly, we can fix it fast.
For more than 35 years, AE Door & Window has served the Cincinnati and Northern Kentucky areas with high-quality Clopay garage door products and exceptional services. We started as a small company operating out of a garage. In the decades since we first opened, we’ve grown into a regional provider that businesses and homeowners turn to when they need garage door products, services and repairs.
A1 Garage Door Service is known for providing only the best value for money. We always aim for the best possible customer service and experience, reasonable costs for our products and services, give FREE estimates and FREE professional advice as well as amazing deals and discounts when you book our service. What’s more, we GUARANTEE that we service all manufacturer warranties, including lifetime warranties. What more can you ask for?
While you can certainly redo any security features on your garage door, it is often wise to replace the entire door if in fact that is the way a burglar gained access to your house. A new security code may seem like enough, but you don’t know how the thief figured out the old code in the first place. If the motor was disengaged, the issue might be a design flaw in the door itself. The best way to ensure that the thief doesn’t return or another thief doesn’t take advantage of the same unknown security weakness is to install a new door. Again, doing so with give you access to the kinds of robust security features that are being installed and implemented in the newest garage doors on the market.
Just compare our total price—item price + tax (if applicable) + shipping&handling—to the total price of other Online stores. If you find a lower price, we will match the price and refund 10% of the difference. Call us at 1-877-357-Door (3667) today with your quote from a competitor. We will review the lower price while processing your order and make any necessary reductions before your order ships.
These springs weighed in at just over 9 pounds each, including the winding cones. They are covered with a light film of oil, and at this point the job starts to get messy. The manufacturer has painted them with a "225B24" part number, which no doubt indicates the 0.2253 inch wire size, 24 inches long. Perhaps the "B" indicates the 2-inch inside diameter. Both the left- and right-hand springs have this same number on them.
The technician, Robert Helton, was very pleasant, helpful, and professional. He repaired the garage door opener expeditiously and explained why it hadn't worked properly. He also checked the chain mechanism and the door itself and showed me how to manually work the door should I need to do that in the future. I was very pleased with this repair work.
Containment cables. When old extension springs break, the springs and cables become heavy whips that damage cars and even injure people. To solve the whipping problem, manufacturers now offer containment cables that run through the center of side-mounted extension springs. If you have extension springs and don’t plan to replace your door, make sure the springs have these containment cables, or have a professional install them.

Cycle lifetime unchanged by diameter-versus-length tradeoffs: Since the material stress (and thus cycle lifetime) for equal torques varies only with d, and not D or N, trading coil diameter (D) for spring length (N) in this fashion has no effect on cycle lifetime. Long and skinny, versus shorter and fatter, they'll wear the same if they have the same wire size and diameter-length product. The game of life is all about wire size when it comes to springs (see below).

Most doors come with electric door openers. After a while these openers malfunction and need to be replaced. If your opener is broken, you're in luck. These repairs don't cost very much and can be replaced easily. You might even be able to do it yourself. Learn how to replace your garage door opener in 15 minutes https://www.youtube.com/watch?v=HeaR6Yhx6IY.
The special-price don't-tell-my-boss trick: In this scheme, after the technician has worked on your door for a bit, he will grimly notify you that he has discovered an additional repair needed, not just the spring(s). He will offer to do the work at a "special price" if you agree not to tell his boss. This air of conspiracy to get a bargain distracts and disarms you from critically thinking whether you really needed the repair in the first place (likely you don't), and whether the price is really a bargain (likely it isn't).
Garage door openers manufactured and installed in the United States since 1982 are required to provide a quick-release mechanism on the trolley that allows for the garage door to be disconnected from the garage door opener in the event of entrapment. [8] Garage door openers manufactured since 1982 are also required to reverse the garage door if it strikes a solid object.[9][10]
The gentleman who showed up to my door was kind and very respectful. Introduced himself < Jeremy> and very professionally. He did an outstanding job and took time to let me know each step that was needed. Personally I would give Precision and the gentleman who came a big rating of a 10++++++ Thank you Precision and I would recommend your company to anyone.. A very pleased customer ... ..
A standard residential door raises 7.5 feet, but since the door goes horizontal this is equivalent to raising the whole door for half that distance, or about 3.75 feet. So if the door weighs, say, 150 lbs, then the energy supplied by the springs is 3.75 * 150, or about 563 foot-pounds. This is like throwing a 50-lb sack of cement up a 11-foot flight of stairs. Or catching a 50-lb sack of cement dropped from 11 feet up.
Sears can fix almost any broken garage door opener, regardless of the brand or where you bought it. Trying to repair a garage door opener yourself can be dangerous because of the spring tension. The Sears technicians who repair garage door openers are experts; they have the knowledge and experience to repair the garage door opener correctly and safety.
(The Wahl correction factor accounts for additional stress in the material due to shear forces, although these forces do not contribute to the spring's torque. These shear forces become significant in designs using a low spring index, which is to say, a relatively thick wire for the coil diameter. The correction factor is applied to scale up the stress S to better predict the fatigue lifetime of the spring.)
Trading wire size for length, diameter, or cycle life: Now we are really going to save you some money, if you just recall your high school algebra class (and I don't mean that cute cheerleader who sat next to you). If you further understand the role of the 4th power of the spring wire size (letter d in the formulas above) in the numerator of the spring rate formula, and how to increase or decrease d to compensate for changes in length, diameter, and cycle life, then you're qualified for elite spring calculations. Matching springs is a matter of equating the 4th power of the proportion in wire size change to the proportion of change in the diameter or length or the product of both diameter and length. However, it is usually best to only increase wire size when substituting a spring, since this does not derate the cycle life. If you observe that the formula for bending stress is proportionate to the inverse 3rd power of the diameter, then physically a proportionate increase in wire size will result in a dramatic increase in cycle life of the 3rd power of that proportion. Trade-off example: Yawn with me while we ponder my original spring once more. Let's say I was in a fit of engineering mania, and wanted to replace my spring having a 0.2253 inch diameter wire (d = 0.2253) with a 0.262 wire version (d = 0.262). How much longer is the spring with equal torque rate, assuming we use the same coil diameter? The proportion of this change is 0.262/0.2253 = 1.163, and the 4th power of that is 1.83. This means the length must increase by a factor of 1.83 (again, not counting dead coils). Recalling that the length in Example 1 was 102 non-dead coils, the heavier wire spring must be about 1.83*102 = 187 coils, which when adding 5 dead coils and multiplying by the wire size to get the overall length, is (187+5)*0.262 = 50 inches, versus 24 inches in the original. So using this heavier wire more than doubles the length (and thus the mass and thus the cost). While the cost about doubles, the stress goes down by the inverse 3rd power of the wire size proportion, or 1/(1.163**3) = 0.64. Sress is favorably, non-linearly related to cycle lifetime (halving the stress more than doubles the lifetime), so this decreased stress should more than double the expected lifetime of the spring. While the up-front cost is more, the true cost of an amortized lifetime is much less. In short, per cycle it is cheaper. Ah, the wonders of engineering calculations! Conclusion: Observe that the stress formula (and thus the cycle lifetime) depends only on wire diameter (d) for equal torques. Thus the only way to improve cycle lifetime is to use heavier wire. For equal torques, heavier wire size, due to the exponents in the formulas, increases cycle lifetime much faster than it increases mass (and thus cost), physically speaking.
Today's garage doors come with those door sensors, and if anything is in the path of the door the sensor detects it and raises the door back to the open position. These precautions are important for families with young children or pets. Even if you don't have a mini me or furry friend running around your yard, it's a good idea to have a garage door that is safe for you, your guests and your belongings. 

The "liability" angle: The flip side of "safety issue" is "liability". This is not used to directly sell you something; it is used to demean the cheaper alternative and prod you into buying a more expensive (and profitable) option. For example, you may be pressured into buying a whole new door, when you just need a new spring, by the salesman telling you he can't just replace the spring due to "liability" issues. Since product liability is a big burden on the garage door industry, and so many old doors (and especially automatic openers) are dangerous, this may be a genuine reason to accept a higher price.
If you haven’t looked at garage doors lately, prepare to be pleasantly surprised. We’ve taken the garage door and made it stylish with designs to complement both classic and contemporary homes while still keeping the functionality you desire. A garage door can represent more than 30% of your home’s curb appeal, which makes choosing the right design especially important – and Home Depot has the widest selection available. With over 1,000 different garage door designs in wood, steel, composite, aluminum and glass, you’re sure to find the perfect style to transform your garage… and your home.
Even if one could somehow stretch and clamp the springs to the proper extra length, the process would still be more trouble, and there would be little or no reduction of risk. Lifting the full weight of the unsprung door by hand and clamping it in the raised position is dangerous in itself, and creates the same amount of stored energy as winding the springs, ready to slip out of your hands. Many doors won't travel far enough up the track to provide clearance to access the springs. You're also going to have to deal with winding stiff steel cables onto both lift drums at once without any resistance to maintain tension. Finally, even if you managed to complete the installation with the door raised, you then have to lower the massive door against an untested balancing torque. If you've made a mistake, then that massive door has nothing but your skeletal force applied through your meat clamps (hands) to prevent it from falling down and crushing whatever is in the way (perhaps your feet?).
A spring design manual, also called a rate book, gives tables that relate the torque constant ("rate") and maximum turns for springs of given wire size, diameter, and length. For example, a typical page in a rate book would show a table for a given wire size and inside diameter, the maximum inch-pounds (MIP) of torque available for a standard lifetime of 10,000 cycles in that size, the weight of the spring per linear inch, and the rates of the spring (as IPPT, inch-pounds per turn) for each of various lengths. From these figures one can calculate the lifting capacity, substitutions, conversions, and cycle life upgrades for a door of given weight and drum geometry. The weight-lifting capacity of a given spring is calculated based on its torque constant (IPPT, or inch-pounds per turn), which is the rotational version of the spring constant that characterizes the spring. The IPPT constant is found from tables giving IPPT for given spring dimensions (wire-size/diameter/length). The same tables may indicate the maximum number of turns for various expected lifetimes in cycles. The torque required to balance a given door can be calculated from the weight of the door times the moment arm of the drums (as we do below under "Calculating the Forces We Will Be Handling"). The ultimate torque of the spring in the fully-wound condition is the number of turns (when fully-wound) times the IPPT constant. Choosing a spring to balance the door then simply requires matching the ultimate torque of the spring to the balancing torque.
When it comes to installing garage doors and openers, The Home Depot has an unbeatable team of professionals dedicated to making sure your garage door project runs smoothly from start to finish. Your new garage door can be customized with a variety of features like unique color choices, window styles and hardware upgrades. We also offer options for your garage door opener including Smartphone control, Wi-Fi, battery back-up. The Home Depot installs garage doors and garage door openers with extended warranties that go beyond industry standards. Contact us today for a free in-home consultation.
Trading wire size for length, diameter, or cycle life: Now we are really going to save you some money, if you just recall your high school algebra class (and I don't mean that cute cheerleader who sat next to you). If you further understand the role of the 4th power of the spring wire size (letter d in the formulas above) in the numerator of the spring rate formula, and how to increase or decrease d to compensate for changes in length, diameter, and cycle life, then you're qualified for elite spring calculations. Matching springs is a matter of equating the 4th power of the proportion in wire size change to the proportion of change in the diameter or length or the product of both diameter and length. However, it is usually best to only increase wire size when substituting a spring, since this does not derate the cycle life. If you observe that the formula for bending stress is proportionate to the inverse 3rd power of the diameter, then physically a proportionate increase in wire size will result in a dramatic increase in cycle life of the 3rd power of that proportion. Trade-off example: Yawn with me while we ponder my original spring once more. Let's say I was in a fit of engineering mania, and wanted to replace my spring having a 0.2253 inch diameter wire (d = 0.2253) with a 0.262 wire version (d = 0.262). How much longer is the spring with equal torque rate, assuming we use the same coil diameter? The proportion of this change is 0.262/0.2253 = 1.163, and the 4th power of that is 1.83. This means the length must increase by a factor of 1.83 (again, not counting dead coils). Recalling that the length in Example 1 was 102 non-dead coils, the heavier wire spring must be about 1.83*102 = 187 coils, which when adding 5 dead coils and multiplying by the wire size to get the overall length, is (187+5)*0.262 = 50 inches, versus 24 inches in the original. So using this heavier wire more than doubles the length (and thus the mass and thus the cost). While the cost about doubles, the stress goes down by the inverse 3rd power of the wire size proportion, or 1/(1.163**3) = 0.64. Sress is favorably, non-linearly related to cycle lifetime (halving the stress more than doubles the lifetime), so this decreased stress should more than double the expected lifetime of the spring. While the up-front cost is more, the true cost of an amortized lifetime is much less. In short, per cycle it is cheaper. Ah, the wonders of engineering calculations! Conclusion: Observe that the stress formula (and thus the cycle lifetime) depends only on wire diameter (d) for equal torques. Thus the only way to improve cycle lifetime is to use heavier wire. For equal torques, heavier wire size, due to the exponents in the formulas, increases cycle lifetime much faster than it increases mass (and thus cost), physically speaking.
Cost was $88 for 2 pairs of springs, plus $21 shipping. (I had to order 2 pairs to meet the $50 minimum order.) They came with new cones inserted as shown at that price, so I didn't bother trying to remove and reuse the old cones to save a few dollars. The cones are quite difficult to remove from old springs and to insert in new ones, and the spring supplier will have the right tooling to do that easily. That was the best price I could find on the Web at the time, and didn't seem out of line with what parts like this might cost at at the building supply (if they only sold them). Contractors buy these much cheaper in quantities; they're just an ordinary high-carbon steel wire turned on a winding machine. I also found Web sites asking a lot more money, obviously trying to cash in on search-engine traffic from do-it-yourselfers. Others report that some local dealers sell springs at retail, but at a high price that eliminates any economy versus having them installed.

We would definitely recommend Precision to anyone that needs garage door services! We were able to get a service appointment right away! Tom arrived and was very professional and courteous. He took the time to go over what repairs were needed and provided an estimate. He was ready to do the repairs right then and there and within a few hours, we had our garage door up and running like new! Thanks to Tom and Precision for a positive experience!
Right-hand versus left-hand winding: Springs are chiral, that is, wound or "laid" in either a left- or right-hand orientation. This is a critical property of their design and specification; you cannot substitute a left for a right or vice versa. If you were to grasp the spring in your hand, and if your right hand orients the tips of your fingers like the ends of the coiled wire when your thumb points "out" of the core of the spring, then you have a right-hand spring; likewise left (which end you grasp does not matter). (This also happens to match the "right hand rule" of magnetic polarity, if you happen to be knowledgeable in such esoteric subjects.) Another way to identify the winding is to examine the spring vertically in front of you; if the coils facing you rise going to the right, it is right-hand (thus you can remember, "rise to the right is right-hand"), and likewise left indicates left-hand. Another way is to view the coil axially; a right-hand spring winds in a clockwise direction as it recedes away, and a left-hand spring counter-clockwise. Yet another way, not so easy to remember, is to hold the spring vertically and compare the coil shape to the letter "Z" (indicates right-hand lay) or the letter "S" (indicates left-hand lay).

If you are a own a home or a business and you have to make repairs to existing doors or complete a replacement you may not need to apply for permits for these small jobs.  I have provided a link here to the Mecklenburg County permit office. You can use this site to conduct research and to decide if you should apply for a permit for your next project.
At this point I weighed the unlifted door to confirm and fine-tune my calculations. This is not strictly necessary, but it makes the adjustments easier to perform, if you happen to have a scale with the requisite capacity. With some helpers, we first lifted the door a few inches and rested it on blocks of wood to provide clearance underneath. Then I slid a 400-pound-capacity freight scale under the center of the door, we lifted again to remove the blocks, and lowered the door gently onto the scale. This door weighed in at 238 pounds, which is very heavy for a single-car door. Since the outside of the door carries the 3/4-inch plywood paneling to match the house, and that plywood weighs about 2 lbs/sq-ft, I estimate the door weight to be about 7 x 10 x 2 = 140 lbs of paneling with the rest 238 - 140 = 98 lbs the interior panels, hardware, and cobwebs. Knowing this total weight will help later in adjusting the torsion on the springs. After weighing, we removed the scale and blocks, leaving the door fully lowered again. Had I not had a high-capacity freight scale, I might have improvised a crude weighing device from levers and smaller weights of known mass, or a lever arm pressing a reduced proportion of the full weight onto a lower-capacity scale. Another factor to remember is that The weight of a wood door can vary with humidity.

Thanks for considering our wide array of Overhead Door™ residential, commercial and industrial doors, openers, operators and accessories to complete your home, business or remodeling project. We are confident that you will find a door and opener product to meet your needs. After all, we lead the industry with our comprehensive selection of residential and commercial door systems.​​​​​​​​​​​​​ Overhead Door Corporation is a proud member of DASMA. ​ ​


As your Kentucky and Ohio garage door repair company, we offer a team of experienced and knowledgeable technicians who move with urgency to diagnose your issues of any garage door repair or service They’ll discuss your options, and then execute the option you’ve selected for your home. When you need the best in garage door service, installation and repair, choose AE Door & Window.
Speed of a thrown winding bar:: The springs, being in balance with the door, effectively are able to launch a typical 150 lb door at 10.6 mph speed. An 18-inch long by 1/2-inch diameter steel winding bar happens to weigh about 1 pound. Since momentum is conserved, this 150:1 ratio in weight of the door to the winding bar means the fully-wound springs could potentially throw a winding bar at 10.6 mph * 150 = 1590 mph = 2332 ft/sec, assuming the energy were perfectly coupled and transferred. If the energy transfer were only 1/3 efficient, this would still be the 800 ft/sec speed of a typical pistol bullet. Except it is a foot-and-a-half metal spear, not a bullet.
Are you in need of an overhead door? Do you have a door that jams or needs repair? Then, turn to the River Valley's most-trusted garage door professionals. Windsor Overhead Door, Inc. has a lineage that stretches back to 1974 and has served from its Russellville, Arkansas location for over 25 years. The company has recently passed to its third generation of owners who themselves have deep ties to the Windsor tradition of quality workmanship and customer service.
Most importantly, you will be greeted by friendly staff and associates that will help you select the right garage door for your home. We welcome the opportunity to supply, install, and/or repair your garage door as well as answer any door questions you may have. When you choose us, you will quickly discover why thousands of Riverbend area customers from house to house and generation to generation have chosen Dan's Garage Door Service as their “DOOR KEEPER” for over 40 years.
Save now on garage doors and get ready to transform the look of your home. Home design experts agree: replacing your garage door can instantly transform the look of your home, almost more than any other exterior improvement. Let us help you select the right garage door to enhance your home's style. Trust us, your home will never look so good from the curb with one of our state of the art Garage Doors.
Spring index lower limit: DASMA standard 102-2004 provides a lower limit of 6 for the spring index, which is symbol C in our formulas above (section 9.3). Other interesting items in this standard include an upper limit for how much the door sags when raised (no more than 1/120 of its width, section 9.2.1), that each of the two bottom brackets should sustain twice the door assembly's weight (section 9.2.2) for a total safety factor of about 4, and that the lift cables should provide a safety factor of 5.
We looked for wireless garage door openers that have the power to lift the heaviest doors and found that 1/2-horsepower motors are best suited for standard aluminum sectional doors used on most homes built from 1990 to today. The 3/4-horsepower garage door opener motors can lift wooden doors up to 550 pounds. Each model we looked at can open a standard 7-foot door, and extension kits are available if your door is taller.
The winding technique is simply to (un)wind as far as one rod will go, where it is pressed against the top of the door, or nearly so, by the unwinding torsion. You insert the other rod in the next socket, remove the first rod, and continue. At any point you can stop and rest by leaving the active rod pressed against the door, where it will be held by the unwinding force. I would make a quarter-turn increment that way, and let go for a moment to collect my attention for the next increment, almost in a quiet, meditative alertness. While you can go from one quarter-turn and rod-swap to the next continually without letting go, working fast against the steady tension seemed to invite a kind of shakiness in my arms that was a bit unsettling. It isn't that there is much physical exertion, it is more that the tension is unrelenting, like peering over a precipice.

When ordering springs, be aware that a number of different sizes of springs will make proper replacements, not just the specific size being replaced. The wire size, winding diameter, and length can be traded off to make springs of varied geometry but equivalent torque characteristics. This will also affect the expected lifetime (in cycles) for the spring(s). Since the critical specification for a replacement is the weight it is designed to bear, not the sizes per se, there are likely several stock sizes that replace a given old spring. The spring distributor's inventory may happen to offer only a different size with an equivalent weight-bearing specification. One has to judge whether to trust the advice of the seller in such situations. The seller should have the data to know what substitutions are proper.
If you've researched this subject at all, you will no doubt have heard that you shouldn't be attempting torsion spring replacement as a do-it-yourselfer. That is generally good advice, so if you have any doubts about your abilities to do risky physical work on your own, hire the job out like everyone else. I found I was capable of doing this work with acceptable risk, because I intelligently understood the techniques, paid careful attention to methods and safety, knew how to use common tools in good condition, properly improvised the special tools I didn't have, and diligently attended to correctly performing a few moments of hazardous manipulation. I learned to do it purely on my own based mostly on bits of advice reluctantly given in Internet forums such as the Usenet newsgroup alt.home.repair. When I first wrote this page in 2002, there was no other do-it-yourself information available on the Web, and it was not until 2005 that reliable information disclosing the techniques started to appear elsewhere (see links below).
When you're done watching this video you'll know how to determine whether the company you hired to replace your garage door spring installed the right size spring on your door. You'll also learn the consequences to your garage door opener if the wrong size spring is used. If you are having a problem with your garage door spring, the 2:30 minutes you spend watching this video is time will spent.

Here are the winding rods inserted in the winding cone of the unbroken old spring, posed just for a picture. Note that I have carefully placed a sturdy, steady ladder just clear of the swing of the rods, such that when I am standing on the lower rungs to reach the rods, that my head and body are clear of the "kill zone" around the spring and cone. You must have a trustworthy platform to stand on, because a slip or shake of the ladder while you are winding can cause you to lose your socketed attachment to the cone, letting loose the spring. I would not trust an ordinary household step ladder for this purpose.
Horsepower: The horsepower measurement, often shortened to HP, describes the power the garage door opener motor has. A motor with a greater horsepower measurement will open and close the door more quickly, while also being able to handle larger and heavier doors. Motors between 1/2 HP and 1 HP are the most common for residential garages, FeldCo says.
Note that I am measuring a spring that is fully relaxed because it is broken!. The length of the relaxed, unbroken spring is the specification of interest. It is harder to measure unbroken springs on an intact door because the springs should not fully unwind, even at the top-of-travel. If you can't be certain of the spring diameter from indications on the cones, then you have to go through an unwinding procedure to relax them fully for measurement, or perhaps reckon the size from measuring the somewhat smaller diameter at the nearly unwound condition when the door is at its top-of-travel (although one should not attempt to raise a door with a broken spring).
A rolling code is a protocol used by garage door openers to keep your door safe and secure. When the radio signals from your remote control are broadcast to your garage door opener, it uses a specific code to communicate. Older models used the same code every time, making garage door openers vulnerable to burglars using a radio frequency identifier device. 
In my case, removing and replacing the relaxed springs required that I take down the assembly: torsion shaft, lift drums, and bearings. Doing that requires unbolting the center bearing plate from the wall, removing the drums from the shaft, and finally sliding the shaft back and forth out of the end bearings to remove the whole assembly off the wall. I am fortunate to have a lot of clearance in this garage to make the disassembly simpler. Tighter clearance to walls or ceiling would make disassembly a more difficult manipulation.
If the spring is broken near a winding cone, you might think you can remove and discard the short broken piece of spring from the cone, clean up the end of the long remaining spring, and insert that end into the cone. This is another extrememly risky improvisation. The shortened spring is not going to have the correct weight-bearing characteristics for the door, so you will not be able to balance the door properly. The shortened spring will be proportionately overwound, resulting in extra stress that will increase the expectation of another fracture. And the aging and history of the original spring being broken greatly increases the likelihood of another fracture at other locations.
The most common grade of torsion springs have an expected life of about 10,000 cycles. The hardened and tempered steel experiences tremendous forces each time the door opens or closes. Gradually, the steel fatigues with each flexure, and eventually cracks and breaks, usually releasing its stored energy in an instant with a horrific "sproing" noise or bang. If you average about two car trips per day, opening and closing the door a total of 4 times daily when you come and go, then that expected life becomes 2500 days, or only about 7 years. If you have an automatic opener, then if you're like me, you tend to cycle the door even more frequently, and can expect the need for spring replacement even sooner. Moreover, my three-car garage has three doors, so on average I can expect a repair job every few years. Over a lifetime, it is very economical to do these repairs myself.
When picking the best garage door for you, a good place to start is with material type. Most garage doors are made from either wood, steel or fiberglass. These three materials are strong, durable and each have their unique benefits at various price points. In order to pick the perfect fit for your home we have developed the DoorView® garage door designer. This interactive visualizer tool helps you design your dream door and allows you to see how it will look on your home with just the push of a button. You can also try it on your Apple iPad and Android devices.
×