Leveling the door: Before commencing the spring winding, to check that you have the door properly leveled on the cables, considering all the factors above that make this a tricky adjustment, apply the winding cone setscrew lightly to lock the (unwound) spring cone temporarily on the torsion shaft, and momentarily lift the door slightly off the floor. Adjust the drum set as needed to level the door, repeating this slight lift test. Loosen the cone setscrew before winding the spring(s).
Beware of improprer prior installations: Sometimes the existing door installation is not correct, and the old springs should not be used as a specification for replacements. For example, the old springs might have been replaced with incorrect sizes because the last repairman didn't have the right one on his truck. If your door has never worked quite right, something like this might be the cause. To correct this, you must use the weight of the door to specify the spring, either from a spring rate manual giving spring torque constants, or from the formulas below.
The "safety issue" trick: Another tip-off is the use of language like "safety issue". This is meant to trump any objections you might have to a costly repair bill. Don't be manipulated by the suggestion that you are risking disaster if you don't buy something expensive. Even if you think the risk is genuine, get another estimate, and tell the second repairman you are skeptical; every technician loves to prove the competition made a mistake.
The electric overhead garage door opener was invented by C.G. Johnson in 1926 in Hartford City, Indiana.[1] Electric Garage Door openers did not become popular until Era Meter Company of Chicago offered one after World War II where the overhead garage door could be opened via a key pad located on a post at the end of the driveway or a switch inside the garage.[2]
Door repair business advice (warning to consumers, you are not allowed to know this): Thinner wire is excellent for shortening spring lifetimes, lightening your inventory on a service truck, and getting paid for frequent service calls. This is why your industry chooses to set "standard" springs to have thin wire and despicably short lifetimes. If you want to maximize profits and fleece your customers, install springs that predictably break in about 7 years on a door that should last decades, even though it is just as easy for you to install slightly more expensive springs that should last the life of the door. Remember that the customer wanted the cheapest price, so you need not feel any guilt about this low-balling.
Insist on having any old parts returned to you, and have that noted on the written order before work begins. An honest and competent technician will not object to this. The evidence will establish whether you really needed the parts or not, and you can consult another opinion if you have any doubts. This tends to deter the parts-upsell scam, and protects you even if you know nothing about what you're buying while under the pressure of making a costly decision. If the old parts mysteriously "disappear", then you have reason to be suspicious.
Depending on the type and location of the damage you might have an alternative to replacing panels, or entire garage doors. One solution to give new life to your garage door is repair. Small dents, rot, rust or holes can be repair without replacing. Depending on what wrong with the panel, average prices for repair are $130 for steel door repairs, $190 for wood, $170 for aluminum and $150 for fiberglass. Garage door panel repair can save homeowners money, but should be weighed against garage door panel replacment.
The prior clamping of the set-screws tends to have pressed a dimple into the hollow shaft and to have distorted the shaft's roundness into an eccentric shape. While releasing the set-screws, I was careful to loosen them enough to let the cone swing around any such distortions. I was also careful to observe any binding of the old cones on the eccentricity or burring on the shaft. The fit of the cone on the shaft is supposed to be loose enough to avoid binding, but if it were to occur one would have to be careful not to assume the spring was unwound when in fact the cone was just stuck on the shaft. If I had a stuck cone that I could not unwind with a little extra force, then I would have called in a technician to deal with it. In the worst case, I suppose the spring must be deliberately broken with some hazard, thus releasing it for a forceful disassembly, and the shaft and some other parts replaced. But this is an unlikely situation and in this case was not necessary.
Don’t miss out on all the modern conveniences and safety improvements that homeowners with automatic garage door openers enjoy. You deserve a garage door that you can open and close remotely. You deserve a garage door that doesn’t force you to get out into the rain and snow to operate it. You can have it with a simple phone call to A1 Garage Door Repair Madison. You can even choose form our fine selection of garage door opener products and have us install it for you.

A spring design manual, also called a rate book, gives tables that relate the torque constant ("rate") and maximum turns for springs of given wire size, diameter, and length. For example, a typical page in a rate book would show a table for a given wire size and inside diameter, the maximum inch-pounds (MIP) of torque available for a standard lifetime of 10,000 cycles in that size, the weight of the spring per linear inch, and the rates of the spring (as IPPT, inch-pounds per turn) for each of various lengths. From these figures one can calculate the lifting capacity, substitutions, conversions, and cycle life upgrades for a door of given weight and drum geometry. The weight-lifting capacity of a given spring is calculated based on its torque constant (IPPT, or inch-pounds per turn), which is the rotational version of the spring constant that characterizes the spring. The IPPT constant is found from tables giving IPPT for given spring dimensions (wire-size/diameter/length). The same tables may indicate the maximum number of turns for various expected lifetimes in cycles. The torque required to balance a given door can be calculated from the weight of the door times the moment arm of the drums (as we do below under "Calculating the Forces We Will Be Handling"). The ultimate torque of the spring in the fully-wound condition is the number of turns (when fully-wound) times the IPPT constant. Choosing a spring to balance the door then simply requires matching the ultimate torque of the spring to the balancing torque.

If you live in a home where there are living quarters directly above the garage, Garage Guide DIY says force-sensing technology built into the B730 ensures a smooth operation, no matter what temperature it is in your garage. The unit adjusts the motor's power on the fly, keeping it running smoothly. Amazon reviewer Steven Bone says the B730/WD962KEV opener runs extremely quietly and is easy to install.
First, we always provide a written estimate that is signed before doing any work, fully explaining what we'll do in plain English so you'll understand it. When we've completed the job, we walk you through and show you what's been done so you can be confident that your door was fixed right. We stand behind the job with the industry's best warranty and our 24 hour call back policy.
Screw - Screw-driven lift systems attach a long screw to the motor to move the garage door. These systems are powerful, fast, relatively quiet and require less maintenance than typical chain- or belt-driven systems. Genie and Overhead Door are two popular brands that make screw-driven systems. Based on our research of Genie’s line, you can expect to pay $244 on average for a screw-driven garage door opener.
Measurements: With the door in the down position, I measure a wire size of 0.273 inches, outside diameter of 2.0 inches, and overall length of 41.5 inches. Relaxing the spring shortens the length by about 7.5 coils of wire, so to estimate the relaxed length, we deduct the wire diamter of 0.273 inches times 7.5 from the 41.5 inch wound length, yielding an estimated relaxed length of 39.5 inches. The mean coil diameter is 2.0 - 0.273, or 1.73 inches. Perhaps this was actually a 40-inch-long spring with a 1.5 ID, 1.75 mean diameter, and 2.0 OD, but let's continue on calculating with the actually observed sizes. The number of coils in the relaxed spring is the relaxed length of 39.5 inches divided by the wire size of 0.273 inches, or about 145 coils. Deducting about 5 dead coils at the ends yields 140 active coils.
The Genie Chain Drive garage door opener combines The Genie Chain Drive garage door opener combines powerful reliable performance with smooth operation to create a long-lasting and easy-to-install garage door opener. The unit's electronic push-button programming makes installation and setup fast and easy. Complete with accessories the system features a reliable DC motor that delivers quiet smooth operation ...  More + Product Details Close
×