The Chamberlain Whisper Drive takes control to a higher level than other models with its door and light automation features. The internal control panel has a sensor for motion-activated lighting. In addition, door closing can be instant or set automatically for 1, 5 or 10 minutes. We give this feature a top-notch rating because, should you forget to close your door, your garage will secure itself.
The "safety issue" trick: Another tip-off is the use of language like "safety issue". This is meant to trump any objections you might have to a costly repair bill. Don't be manipulated by the suggestion that you are risking disaster if you don't buy something expensive. Even if you think the risk is genuine, get another estimate, and tell the second repairman you are skeptical; every technician loves to prove the competition made a mistake.
We love the fact that you can connect the Chamberlain Whisper Drive with a phone app for long-distance control, as well as the fact that the door will secure itself if you forget to do so. As with any technology, there is a learning curve in which the kinks will need to be worked out. But overall, very few owners have anything bad to say about the Whisper Drive. One smartphone user expressed his satisfaction with the product by saying, “I can check if I've left the garage door open and close it from my office!”
Give your garage a great look with garage doors from Menards®. Menards® has all the supplies, tools, and accessories you need to install a stylish new garage door. Choose the perfect door from our selection of residential and commercial garage doors as well as roll-up doors for storage sheds. At Menards®, you will find a wide variety of door sizes ranging from 4 feet to 9 feet wide, 10 feet to 16 feet wide, and over 16 feet wide. Because of the layer of insulation, insulated garage doors are generally quieter than noninsulated doors. Insulated doors also offer improved energy efficiency, so you can stay comfortable while working in the garage no matter what the weather's like outside.
In my case, removing and replacing the relaxed springs required that I take down the assembly: torsion shaft, lift drums, and bearings. Doing that requires unbolting the center bearing plate from the wall, removing the drums from the shaft, and finally sliding the shaft back and forth out of the end bearings to remove the whole assembly off the wall. I am fortunate to have a lot of clearance in this garage to make the disassembly simpler. Tighter clearance to walls or ceiling would make disassembly a more difficult manipulation.
Our team of 100-plus technicians and service representatives takes care of you every step along the way. Our technicians are the best in the area. They’ll provide expert guidance as you consider your options, and then top-notch service to complete the repairs. When you want Cincinnati or Northern Kentucky garage door repair you can trust, choose AE Door & Window.
Note that I am measuring a spring that is fully relaxed because it is broken!. The length of the relaxed, unbroken spring is the specification of interest. It is harder to measure unbroken springs on an intact door because the springs should not fully unwind, even at the top-of-travel. If you can't be certain of the spring diameter from indications on the cones, then you have to go through an unwinding procedure to relax them fully for measurement, or perhaps reckon the size from measuring the somewhat smaller diameter at the nearly unwound condition when the door is at its top-of-travel (although one should not attempt to raise a door with a broken spring).
What is a battery backup? During a power outage, a battery backup allows your garage door opener to keep working. This is especially important when a wildfire is blazing. During the infamous California wildfires, many people were getting trapped in their garages. Several even died. California state Senator Bill Dodd was among those unable to get out, since he could not manually open his heavy wooden garage door. Drawing on his personal experience, Senator Dodd introduced a bill to make battery backups mandatory in the state of California. On August 16, 2018 the Garage Door Safety Bill passed with wide bipartisan support. As Cheryl Diehm, a Santa Rosa resident who testified before lawmakers, put it, "Make no mistake -- this legislation will help save lives."

The standard winding tools are simply a pair of 18-inch lengths of mild steel rod, 1/2-inch diameter. Winding cones can have different socket sizes (such as 5/8 inch instead of 1/2 inch), so it is important to measure the socket and select a matching rod diameter. Also beware that poor-quality cones may have a sloppy fit to the winding bars, and a loose fit presents a severe hazard of slipping at the worst moment; anything more than about an inch or two of play at the handle end is too loose for safety. I bought a 3-foot length of zinc-plated 1/2-inch diameter steel rod from Home Depot for about $3, which conveniently cuts into two halves of just the right length (the store might even cut it for you if you ask). A steel supplier selling at commodity prices might charge about 50 cents or so for such a piece that weighs about 2 lbs. Drill rod would work if used in the annealed condition in which it is originally sold, but the added expense provides no benefit and the brittleness (if it had been hardened and not annealed) would worry me a bit. Rebar, threaded rod, screwdrivers, etc., are absolutely foolish as they will not fit the socket snugly. Aluminum rod is definitely too weak, and will bend under the torque that must be applied. Longer rods would make for more leverage but unwieldly swing; shorter rods make for uncontrollable swing. As we'll calculate below, the 18-inch standard tool length is an appropriate compromise. Note that you do not need 18 inches of ceiling clearance above the torsion shaft to use an 18-inch rod, since you need not swing the rods above horizontal when winding.
Mechanical garage door openers can pull or push a garage door with enough force to injure or kill people and pets if they become trapped. All modern openers are equipped with “force settings” that make the door reverse if it encounters too much resistance while closing or opening. Any garage door opener sold in the United States after 1992 requires safety eyes—sensors that prevent the door from closing if obstructed. Force settings should cause a door to stop or reverse on encountering more than approximately 20 lbs (9.07 kg) of resistance. Safety eyes should be installed a maximum of six inches above the ground. Many garage door injuries, and nearly all garage door related property damage, can be avoided by following these precautions.

Steel entry doors - when a garage is being fitted with new doors, it is also a good idea to consider a separate single 3x68 exterior door with half-glass and locksets too. These may require some carpentry, but they are a good way to allow for some flexibility in the choice of larger garage door, and can ensure that the homeowner will have more than a single way in or out of the structure. The average costs for such a feature range from $250 to $1000 each.
However, in addition to potentially causing injuries to the under-prepared DIYer, a malfunctioning door can become a safety hazard to you and your family. Keep in mind, according to the National Electronic Injury Surveillance System (NEISS), over 13000 people checked into hospitals with garage related injuries in the United States in 2007. You don’t want to turn a loved one into a statistic just to save a few dollars!
Not sure what’s wrong with your garage door? Don’t know how much it will cost to repair? With Precision Garage Door Service of Lincoln, you’ll never have to worry about an unexpected bill. Contact one of our professionals today for a free technical evaluation and repair estimate. Once we’ve given you a price, you’ll be able to confidently make the decision whether you’ll want to move forward with the repair.
As noted above, set-screw clamping may have distorted the cross-section of the shaft and made it difficult to slide off all the hardware. With the shaft on the floor, it may be possible to restore enough roundness to proceed, using compensating clamping force to the distorted area via a machinist's vise, an arbor press, a hydraulic shop press, etc., on the shaft body. Burrs and other slight distortions on the shaft can be filed off with a hand file or touched with an abrasive wheel on an angle grinder. At some point, the condition of the shaft may just be degraded enough that it ought to be replaced.
Door repair business advice (warning to consumers, you are not allowed to know this): Thinner wire is excellent for shortening spring lifetimes, lightening your inventory on a service truck, and getting paid for frequent service calls. This is why your industry chooses to set "standard" springs to have thin wire and despicably short lifetimes. If you want to maximize profits and fleece your customers, install springs that predictably break in about 7 years on a door that should last decades, even though it is just as easy for you to install slightly more expensive springs that should last the life of the door. Remember that the customer wanted the cheapest price, so you need not feel any guilt about this low-balling.
Install the stiffening strut on top of the top section of steel doors with the section lying flat. Then install the opener bracket that replaces the center bracket between the top two sections. While you’re working on the sections, protect them from scratches by putting carpet scraps on top of your sawhorses. Now, slide the rollers into the roller brackets.
I repeat my caution about the uncertainty of interpreting color codes. A professional installer reading this page emailed me to say that the red color indicates the springs are right-hand windings, not the DASMA color code for the wire size. But this photo shows both a right- and a left-hand spring, and both have the red paint on the cones and set-screws. I conclude it is prudent to make your own measurements and analysis. Do not rely on the colors on old installations. The only time I would respect them would be on new parts that carried documentation giving the code.
If the spring is broken near a winding cone, you might think you can remove and discard the short broken piece of spring from the cone, clean up the end of the long remaining spring, and insert that end into the cone. This is another extrememly risky improvisation. The shortened spring is not going to have the correct weight-bearing characteristics for the door, so you will not be able to balance the door properly. The shortened spring will be proportionately overwound, resulting in extra stress that will increase the expectation of another fracture. And the aging and history of the original spring being broken greatly increases the likelihood of another fracture at other locations.

Resetting the drums, if needed: If the drums were incorrectly set in their old positions, one must reset both drums in new positions on the shaft. This is complicated by the presence of old dimples in the torsion shaft from previous setting(s), which must be avoided lest they improperly influence the new setting of the drums. To begin this process of resetting the drums, the door must first be lowered and resting level on the floor, the spring(s) must be in the unwound condition with their set-screws loosened, and the lift cables wrapped around the drums. If for some reason the door does not rest level on the floor, such as the floor being uneven, then insert temporary shims between the door bottom and the floor to bring the door up to level. Loosen the set-screws on the drums, and turn the torsion shaft to avoid the old dimples from the set-screws in the old drum position. Tighten the set-screw on the left drum (that is, on your left as you face the door from in the garage), creating a new dimple, and apply tension to its cable with the locking-pliers technique, enough tension to keep the cable taut but not enough to start to move the door up. Attach and wind the cable on the opposite (right) drum by hand until the cable is similarly taut, and set the screw, remembering that tightening the screw will tend to add a bit of extra tension to the cable. Both drums should now be fixed on the torsion shaft, with the cables about equally taut (listen to the sound when you pluck them like a guitar string) and the door still level on the ground. Setting the left drum first, and the right drum second, will allow you to take up any slack in the cable introduced by the left drum rotating slightly with respect to the torsion shaft as you tighten the set screws. This alignment and balance of the cables, drums, and door is critical to smooth operation and proper closing. If you have a single-spring assembly, the distance along the torsion tube from the spring cone to one drum is longer than to the other drum, which allows a bit more twist to one side than the other, and you may have to compensate with the setting of the drums.

Garage Door Service Co