Since 1975, Kitsap Garage door has provided Kitsap Penninsula with reliable, comprehensive and responsive residential and commercial garage door repair, maintenance and installation services. At Kitsap Garage Door, our primary focus is offering Bremerton, Shelton and Kitsap, WA, home and business owners with the highest quality products and services, as well as exceptional customer experiences marked with free service estimates, workmanship warranties, reliable support and emergency services.
Carter door: Garage doors in Florida come with extra bracing on the back and are wind-loaded to protect against hurricanes. The average with is 350 lbs. but some can weigh as much as 800 lbs. It can cost up to $1,000 dollars to replace a steel two-car garage door and if it's made of wood it can cost you up to $5,000 dollars. Some customized doors can be as much as 20 - 30k.
At Kitsap Garage Door, our Clopay commercial garage door catalog is designed to facilitate efficient and long-lasting operations. We have several options appropriate for any commercial industry, from fire stations and restaurants to concessions stands or ticket sales. Explore our selection of commercial garage doors, specialty products and accessories including:
The material and style of your door as well as the replacement parts needed will impact the total cost of your project. It would cost less to install a steel door with no opener then it would to install a wood door with an opener etc... High tech doors come with enery-effecient glaze and thick insualation as well as finshed interiors and other upgrades. These doors are more expensive but are more reliable and durable.
Lift cable placement: On the standard residential door mechanism, the loops at the lower ends of the two lift cables loop over the two bottom roller shafts which project from the bottom bracket on the door. The upper cable ends fasten to the drums using one of the methods described above. The drums are positioned along the torsion shaft such that the inner edge of each drum is approximately over the edge of the door. The cable winds onto the drum from outside in, so at the top of travel the cable is winding onto the inner edge of the drum, vertical from the edge of the door where it is looped over the roller shaft. As the door is lowered, the cable winds out to the outer edge of the drum, and thus is a bit out from the vertical, but the cable still falls in the gap between the guide rails and door edge. My cables rub and slap on the rails a bit, but after 30 years and many 10,000s of cycles, they don't seem to have worn at all.
Unmatched or mismatched spring pair: You may find that you have a pair of springs that are different sizes. This mismatch may be a normal application, since the total torque on the torsion shaft is simply the sum of the torque contribution of each spring (indeed, very large doors can be lifted with 4 or more springs along the torsion shaft). The sum of the torque rates determine the lift; and dividing the torque among multiple springs does not change this. Some repair shops even apply mismatched pairs deliberately, since a few stock sizes of springs can be combined to fit a wider range of door weights than only matched pairs. For example, a technician may carry springs in increments of 20 lbs of lift, and when using pairs this allows a 20 lb increment in possible choices instead of 40 lb increments. Or, one spring from a pair may have broken and been replaced with a spring of equal torque rate but different size than the original.
Once the springs are torqued, the setscrews tightened, and the locking pliers and winding rods removed, do not play with turning the torsion bar using the winding rods. Doing so even momentarily can relieve the tension on the lift cables, which then easily slip off the drums. Replacing the cables on the drums can be difficult without repeating the entire spring unwinding-winding procedure again, and the cables can be damaged if tension is applied while they are off the drums.
Absolute Overhead Door recently launched a blog that can be found here so that readers would be able to see the benefits of a garage and what they should do in the event their newly driving teenage drove into the garage door. The blog offers many tips for “fix at home” solutions as well as giving examples of situations when calling us for a service call is the best decision. In our blog, we give professional and honest recommendations for the most reader and budget friendly options for families looking for advice that doesnt cost a fortune and an obligation to purchase a new garage door from a salesman afterwards! Check it out! We hope you enjoy it.
Lower the door and dismantle it by removing the hardware. Lower a double door by recruiting at least two helpers to help with the weight, and place a 2×4 block under the door to prevent smashing a foot or finger when it’s lowered. Remove the sections one at a time by disconnecting the rollers and brackets. If you have windows, tape them to help control flying shards if they break. Then remove the old roller tracks and remaining hardware.

If you're clever and equipped with a welder, you might think you could get away by welding a broken spring back together. At least two factors make this extremely risky. First, the weld itself may fail, either due to insufficient basic strength, or weakening of the nearby parts of the spring. Second, the fact that the spring was old and fatigued enough to break once, means that it is likely to break again soon at other location(s).
Security Lights: Most newer garage door openers have at least two bright light bulbs, as well as lights activated by motion. On the other hand, some older or cheaper openers are limited to a single light bulb. This doesn't help much with a garage darkened by shadows, leaving you unsure if the rustling in the corner is your cat … or a skunk that snuck into the garage.
Roller doors ("Sheet Doors"-USA) are usually constructed of corrugated steel. They evolved from cover window and door coverings.[4] Other materials can be used (e.g.; transparent corrugated fibreglass) where strong impact resistance is not required. Corrugations give the door strength against impacts. A typical single car garage roller door has a preloaded spring inside the rolling mechanism. The spring reduces the effort required to open the door. Larger roller doors in commercial premises are not sprung (except USA) and use a manual pulley and chain system or a geared motor to raise and lower (roll up and roll down) the door. Roller doors cannot be effectively insulated.
Trading wire size for length, diameter, or cycle life: Now we are really going to save you some money, if you just recall your high school algebra class (and I don't mean that cute cheerleader who sat next to you). If you further understand the role of the 4th power of the spring wire size (letter d in the formulas above) in the numerator of the spring rate formula, and how to increase or decrease d to compensate for changes in length, diameter, and cycle life, then you're qualified for elite spring calculations. Matching springs is a matter of equating the 4th power of the proportion in wire size change to the proportion of change in the diameter or length or the product of both diameter and length. However, it is usually best to only increase wire size when substituting a spring, since this does not derate the cycle life. If you observe that the formula for bending stress is proportionate to the inverse 3rd power of the diameter, then physically a proportionate increase in wire size will result in a dramatic increase in cycle life of the 3rd power of that proportion. Trade-off example: Yawn with me while we ponder my original spring once more. Let's say I was in a fit of engineering mania, and wanted to replace my spring having a 0.2253 inch diameter wire (d = 0.2253) with a 0.262 wire version (d = 0.262). How much longer is the spring with equal torque rate, assuming we use the same coil diameter? The proportion of this change is 0.262/0.2253 = 1.163, and the 4th power of that is 1.83. This means the length must increase by a factor of 1.83 (again, not counting dead coils). Recalling that the length in Example 1 was 102 non-dead coils, the heavier wire spring must be about 1.83*102 = 187 coils, which when adding 5 dead coils and multiplying by the wire size to get the overall length, is (187+5)*0.262 = 50 inches, versus 24 inches in the original. So using this heavier wire more than doubles the length (and thus the mass and thus the cost). While the cost about doubles, the stress goes down by the inverse 3rd power of the wire size proportion, or 1/(1.163**3) = 0.64. Sress is favorably, non-linearly related to cycle lifetime (halving the stress more than doubles the lifetime), so this decreased stress should more than double the expected lifetime of the spring. While the up-front cost is more, the true cost of an amortized lifetime is much less. In short, per cycle it is cheaper. Ah, the wonders of engineering calculations! Conclusion: Observe that the stress formula (and thus the cycle lifetime) depends only on wire diameter (d) for equal torques. Thus the only way to improve cycle lifetime is to use heavier wire. For equal torques, heavier wire size, due to the exponents in the formulas, increases cycle lifetime much faster than it increases mass (and thus cost), physically speaking.
Repair Sagging Garage Doors – As doors and homes age, they can shift and move and sometimes this results in a garage door that needs to be realigned or reinforced. We will send a technician to your home to adjust the doors and to inspect the entire opening to make sure the door isn’t damaged. Once we understand the problem, we will fix the needed parts and make any adjustments to the door.
The electric overhead garage door opener was invented by C.G. Johnson in 1926 in Hartford City, Indiana.[1] Electric Garage Door openers did not become popular until Era Meter Company of Chicago offered one after World War II where the overhead garage door could be opened via a key pad located on a post at the end of the driveway or a switch inside the garage.[2]
Measurements: With the door in the down position, I measure a wire size of 0.273 inches, outside diameter of 2.0 inches, and overall length of 41.5 inches. Relaxing the spring shortens the length by about 7.5 coils of wire, so to estimate the relaxed length, we deduct the wire diamter of 0.273 inches times 7.5 from the 41.5 inch wound length, yielding an estimated relaxed length of 39.5 inches. The mean coil diameter is 2.0 - 0.273, or 1.73 inches. Perhaps this was actually a 40-inch-long spring with a 1.5 ID, 1.75 mean diameter, and 2.0 OD, but let's continue on calculating with the actually observed sizes. The number of coils in the relaxed spring is the relaxed length of 39.5 inches divided by the wire size of 0.273 inches, or about 145 coils. Deducting about 5 dead coils at the ends yields 140 active coils.
Lift cable placement: On the standard residential door mechanism, the loops at the lower ends of the two lift cables loop over the two bottom roller shafts which project from the bottom bracket on the door. The upper cable ends fasten to the drums using one of the methods described above. The drums are positioned along the torsion shaft such that the inner edge of each drum is approximately over the edge of the door. The cable winds onto the drum from outside in, so at the top of travel the cable is winding onto the inner edge of the drum, vertical from the edge of the door where it is looped over the roller shaft. As the door is lowered, the cable winds out to the outer edge of the drum, and thus is a bit out from the vertical, but the cable still falls in the gap between the guide rails and door edge. My cables rub and slap on the rails a bit, but after 30 years and many 10,000s of cycles, they don't seem to have worn at all.
The usually recommended rule for a door being properly balanced is that it should lift "easily" through all its travel. The door may also remain stationary if let go somewhere around the middle of the travel, but a smoothly rolling door many not show this behavior (while a sticky track will!), so easy travel is the only reliable test for proper balance. A difficult door may be due to stiff bearings or rollers in the mechanism, tracks out of alignment, etc., not necessarily the torsion spring adjustment.
Horsepower: The horsepower measurement, often shortened to HP, describes the power the garage door opener motor has. A motor with a greater horsepower measurement will open and close the door more quickly, while also being able to handle larger and heavier doors. Motors between 1/2 HP and 1 HP are the most common for residential garages, FeldCo says.
Establish an alternate entry to your garage or update an existing one with our selection of garage entry doors. With an entry door, you will lose less heat or air when you enter your garage to work. Our variety of garage and outdoor organization materials will help you keep all the items in your garage neatly and efficiently organized while our floor coatings and utility flooring will help ensure your cement garage floors last longer than if they were left untreated.
Safe automatic door openers. All automatic openers must now have an auto-reversing mechanism and photoelectric eyes located near the floor on both sides of the door (see photo). If the door is closing and the beam between the eyes is interrupted, the door will automatically reverse. If the eyes aren’t connected, the door won’t operate. For instructions on how to install a new garage door opener, see How to Install a Garage Door Opener.
There are such a large number of varied issues with carport entryway repair. Stray pieces will be the dependable wind up being free with time. A bothering sound when you work the entryway opener is a marker that there is an isolated wandering part. Prior to an opening, it ensures that that the power supply is standing alone from the framework, or else you may hurt yourself. Now and again the gaps for stray pieces can expand the extent of to a degree that you can’t fix them. In such a case, you can employ wood fillers or perhaps regular wood pieces to top them off.
The disaster-is-nigh technique: As he inspects your door, the serviceman grimly calls your attention to "cracks" in your garage door. These appear very faintly in the middle of the door where the panels bow under their own weight when the door is up. This is normal, but the type of thing you wouldn't casually observe yourself. This surprising revelation disarms you, and you may find yourself strangely susceptible to the pitch for an entire new door.
Cable fail-safe redundancy: Based on the proper setting of the drums on the torsion shaft, the two lift cables divide the lifting force equally to keep the door level as it rises. This not only levels the door, but also provides a fail-safe mechanism. If one of the cables should fail, such as from breaking or losing its end attachment, the other cable will then carry the full weight of the door. This will pull the door up on one side with twice the normal force, while the other side falls from its now unsupported weight, tending to make the door bind in its tracks and jam. Although not foolproof, this is a safety feature of the design which keeps the door from falling catastrophically if a cable were to fail while the door was traveling. The jammed condition also prevents a lowered door from opening with the hazard of a single broken cable, further minimizing the chances of both cables failing. Since if one cable fails the other must sustain the full weight of the door, the cables and attachments are rated many times the normal working load of half the door weight. A proper safety inspection of the door should include a critical look at the cables and their attachments.
Clearly there is a lot going on with your garage door and it takes trained and qualified experts to properly install, maintain, repair, and replace them. The experts and On Track Garage Door Services have the tools, skills, training to get your garage door fixed the first time. In addition we can help you fix your garage door affordably and offer many options from your basic garage door to custom wood styles. To find out how much your garage door repair will cost, give us a call at 480-641-2301 or use our Contact Page.
Plus, we carry all the best and high quality products from the top garage door brands. Whatever is your requirement or need for your garage door, we are sure to have them in our comprehensive inventory. We have garage doors in different styles, materials, colors, designs and what-have-you. If you still cannot find what you are looking for, we can always source them out for you.
Prices, promotions, styles, and availability may vary. Our local stores do not honor online pricing. Prices and availability of products and services are subject to change without notice. Errors will be corrected where discovered, and Lowe's reserves the right to revoke any stated offer and to correct any errors, inaccuracies or omissions including after an order has been submitted.
×