Furthermore, newer doors come with more improved security features, helping to improve the way you protect your home and loved ones. While older doors are easy to break into, whether through breaking the lift mechanism or even using a universal garage door remote, new doors come with many redundant security features, which will go a long way in deterring even the most ingenious burglar.
Garage door manufacturers typically produce garage doors fitted with torsion springs that provide a minimum of 10,000 to 15,000 cycles and are guaranteed for three to seven years. One cycle is a single opening and closing sequence. Most manufacturers offer a 30,000 cycle spring. However, it is important to remember that if the weight of the garage door is increased by adding glass, additional insulation, or even several coats of paint, the life of the torsion spring may be greatly reduced. Additionally, springs at highly humid environments, such as coastal regions tend to have a significantly shorter cycle life, due to the corrosive cracking.

The low rating on the CS is due to the fact that inwas out of town and my wife called because the garage door wouldn't open. We had repairs to the only other exit, and the CS said because it could be opened manually, it was no emergency. She was stuck in the house for over Sixteen hours. No emergency crew came out. Steve, a tech who came out the first time, fixed the door. It is not his fault CS took their sweet time to help a 45 year customer. I commend Steve. I do NOT have anything good to say about CS.
The winding technique is simply to (un)wind as far as one rod will go, where it is pressed against the top of the door, or nearly so, by the unwinding torsion. You insert the other rod in the next socket, remove the first rod, and continue. At any point you can stop and rest by leaving the active rod pressed against the door, where it will be held by the unwinding force. I would make a quarter-turn increment that way, and let go for a moment to collect my attention for the next increment, almost in a quiet, meditative alertness. While you can go from one quarter-turn and rod-swap to the next continually without letting go, working fast against the steady tension seemed to invite a kind of shakiness in my arms that was a bit unsettling. It isn't that there is much physical exertion, it is more that the tension is unrelenting, like peering over a precipice.

An extension spring counterbalance system consists of a pair of stretched springs running parallel to the horizontal tracks. The springs lift the door through a system of pulleys and counterbalance cables running from the bottom corner brackets through the pulleys. When the door is raised, the springs contract, thus lifting the door as the tension is released. Typically these springs are made of 11 gauge galvanized steel, and the lengths of these springs are based on the height of the garage door in question. Their lifting weight capacity can best be identified by the color that is painted on the ends of the springs.


The standard winding tools are simply a pair of 18-inch lengths of mild steel rod, 1/2-inch diameter. Winding cones can have different socket sizes (such as 5/8 inch instead of 1/2 inch), so it is important to measure the socket and select a matching rod diameter. Also beware that poor-quality cones may have a sloppy fit to the winding bars, and a loose fit presents a severe hazard of slipping at the worst moment; anything more than about an inch or two of play at the handle end is too loose for safety. I bought a 3-foot length of zinc-plated 1/2-inch diameter steel rod from Home Depot for about $3, which conveniently cuts into two halves of just the right length (the store might even cut it for you if you ask). A steel supplier selling at commodity prices might charge about 50 cents or so for such a piece that weighs about 2 lbs. Drill rod would work if used in the annealed condition in which it is originally sold, but the added expense provides no benefit and the brittleness (if it had been hardened and not annealed) would worry me a bit. Rebar, threaded rod, screwdrivers, etc., are absolutely foolish as they will not fit the socket snugly. Aluminum rod is definitely too weak, and will bend under the torque that must be applied. Longer rods would make for more leverage but unwieldly swing; shorter rods make for uncontrollable swing. As we'll calculate below, the 18-inch standard tool length is an appropriate compromise. Note that you do not need 18 inches of ceiling clearance above the torsion shaft to use an 18-inch rod, since you need not swing the rods above horizontal when winding.

With the rods and other tools at hand, I am ready to begin. The first task is to remove the broken spring and its unbroken mate from the torsion shaft. To remove and disassemble the shaft and lift drums, the torsion on the unbroken spring must first be released. I used a ratcheting box-end wrench to loosen the set-screws while pushing the rod against the force I knew would be released when the screws let go. Later I switched to an open-end wrench for the set-screws, since some of the square screw heads were too rough to fit in the box-end wrench.
Now 13 pounds of force must be respected when backed by many hundreds of foot-pounds of stored energy, waiting to be released. Holding this torque is equivalent to stalling a 3 horsepower DC motor. But holding and turning these handles does not require extraordinary human strength. Note that this maximum tangential force depends only on the weight of the door, and the radius of the drums, and is divided by the number of springs (some designs have only one longer spring, as mine did originally, instead of two shorter ones). Higher or lower lift distances imply more or less turns to wind the spring (and thus a different spring geometry), but not more force on each turn.

However, if you are confident that you don’t just need new batteries, make sure to call a professional. A service person with a lot of experience will be able to look at the problem and quickly diagnose the issue, saving you precious time. Again, while you may be able to save money in the short term by taking a day off and troubleshooting the problem yourself, the amount of energy and time lost as you search out the issue will quickly surpass the cost of a professional repair.

Since 2015, we’ve tested a variety of devices such as smart locks, video doorbells, DIY home security systems, thermostats and more. We use these testing experiences to inform our evaluations of other equipment. As time and resources allow, we occasionally test new types of products, but there are still some circumstances where we’re unable to conduct in-house tests. When testing isn’t possible, we conduct thorough research using the same standards we apply to our in-house tests – this is the case with smart garage door openers. We’ve reviewed garage door openers since 2011. 

Garage Door Opener Co

×