We’ve earned that reputation by always putting our customers first. When it comes to residential and commercial garage door repair services in northern Kentucky and Cincinnati, you’ll always get our best. That includes reliable installation, quick and responsible customer service, free and fair estimates on our work and 24/7 emergency service when you need it the most. We have designed our installation and repair services to make sure you get the most out of your garage door for as long as possible.
If return on investment is a priority and you don’t live in the West, your best strategy may be to buy a low- to moderately-priced door that significantly improves the look of your home. Consider adding an automatic garage door opener at the same time. The beauty of a new door and the convenience of an automatic opener are sure to be a winning combination.
Another recent innovation in the garage door opener is a fingerprint-based wireless keypad. This unit attaches to the outside of the garage door on the jamb and allows users to open and close their doors with the press of a finger, rather than creating a personal identification number (PIN). This is especially helpful for families with children who may forget a code and are latchkey kids.

Here's a view of my door and its broken torsion spring. This door is 10 feet wide and 7 feet high, constructed of 3/4 thick hollow wood panels inside with 3/4 inch plywood siding outside to match the house exterior. This is original to the house which was constructed in 1978, and is much heavier (238 pounds, as I measured later as described below) than the steel doors most common today in new construction. The 10-foot width is a little larger than usual for a one-car garage; such doors are typically only 7 or 9 feet wide. The ceiling height is 9 feet, providing 18 inches clearance above the torsion shaft. This is in a 3-car garage with 3 separate extra-wide doors. Every man's dream! ('cept when the door is broke.)
By watching the chalk mark while winding, you can count the number of turns applied, and confirm the number later. My standard-size door (7 foot height) with 4-inch drums has a nominal wind of 7-1/4 or 7-1/2 turns, which leaves 1/4 or 1/2 turn at the top-of-travel to keep the lift cables under tension. After 7 turns on the first spring, I clamped down the set-screws, weighed the door again, and found a lift of about 100 pounds in reduced weight. As expected, this wasn't quite half of the full 238 pounds, nor would it leave any torsion at the top-of-travel, so I added an 8th turn. The door now weighed 122 pounds on one spring, which was ideal. After winding the other spring, the door lifted easily, with only a few pounds apparent weight. This confirmed that the spring choice was properly matched to the door design. I engaged the electric opener trolley, and adjusted the opener forces down to a safer level suitable for the new, improved balance. The door was now ready for return to service.
Garage Door Installation – This includes the installation of a new garage door. Includes the door itself, the track, cables, springs, hinges, handles, locks and rollers.  It is the complete service and installation of a new door. We inspect all the parts, make adjustments to fit your garage opening, and service all elements during the installation process. Plus, we check to ensure all parts are in proper working order after installed.
You can choose from three basic types of steel door: (1) steel only; (2) steel with insulation on the inside; and (3) steel on both sides with 1-3/8 to 2 in. of insulation. Other features that add to the cost are thicker insulation and windows, especially insulated windows. The do-it-yourself tensioning systems also add a little to the door’s cost. Be sure to specify exactly what you want.
Leveling the door: Before commencing the spring winding, to check that you have the door properly leveled on the cables, considering all the factors above that make this a tricky adjustment, apply the winding cone setscrew lightly to lock the (unwound) spring cone temporarily on the torsion shaft, and momentarily lift the door slightly off the floor. Adjust the drum set as needed to level the door, repeating this slight lift test. Loosen the cone setscrew before winding the spring(s).
Dodging a falling door:: Reversing this equation gives us x=gt^2/2 as the fallen distance x for a given time t. How much time would you have to dodge a falling door if the spring were to suddenly break at the top of travel? Let us assume you are 5.5 feet tall, so the door will hit your head after falling 2 feet from its 7.5 foot fully-raised height. This 2-foot fall takes sqrt(2*2/32.2) = 0.35 seconds (350 milliseconds). The quickest human response time is about 200 milliseconds, so even if you are alert to the hazard, this leaves you only about 150 milliseconds to accelerate and move your noggin out of the way. If you are an Olympic gold medalist in the 100 meter dash, you can accelerate (horizontally) about 10 feet/second^2, and your 150 milliseconds of wide-eyed panic will move you all of 10*0.15^2/2 = 0.11 foot = 1.35 inch.

Door repair business advice (warning to consumers, you are not allowed to know this): Thinner wire is excellent for shortening spring lifetimes, lightening your inventory on a service truck, and getting paid for frequent service calls. This is why your industry chooses to set "standard" springs to have thin wire and despicably short lifetimes. If you want to maximize profits and fleece your customers, install springs that predictably break in about 7 years on a door that should last decades, even though it is just as easy for you to install slightly more expensive springs that should last the life of the door. Remember that the customer wanted the cheapest price, so you need not feel any guilt about this low-balling.
Lower the door and dismantle it by removing the hardware. Lower a double door by recruiting at least two helpers to help with the weight, and place a 2×4 block under the door to prevent smashing a foot or finger when it’s lowered. Remove the sections one at a time by disconnecting the rollers and brackets. If you have windows, tape them to help control flying shards if they break. Then remove the old roller tracks and remaining hardware.
Resetting the drums, if needed: If the drums were incorrectly set in their old positions, one must reset both drums in new positions on the shaft. This is complicated by the presence of old dimples in the torsion shaft from previous setting(s), which must be avoided lest they improperly influence the new setting of the drums. To begin this process of resetting the drums, the door must first be lowered and resting level on the floor, the spring(s) must be in the unwound condition with their set-screws loosened, and the lift cables wrapped around the drums. If for some reason the door does not rest level on the floor, such as the floor being uneven, then insert temporary shims between the door bottom and the floor to bring the door up to level. Loosen the set-screws on the drums, and turn the torsion shaft to avoid the old dimples from the set-screws in the old drum position. Tighten the set-screw on the left drum (that is, on your left as you face the door from in the garage), creating a new dimple, and apply tension to its cable with the locking-pliers technique, enough tension to keep the cable taut but not enough to start to move the door up. Attach and wind the cable on the opposite (right) drum by hand until the cable is similarly taut, and set the screw, remembering that tightening the screw will tend to add a bit of extra tension to the cable. Both drums should now be fixed on the torsion shaft, with the cables about equally taut (listen to the sound when you pluck them like a guitar string) and the door still level on the ground. Setting the left drum first, and the right drum second, will allow you to take up any slack in the cable introduced by the left drum rotating slightly with respect to the torsion shaft as you tighten the set screws. This alignment and balance of the cables, drums, and door is critical to smooth operation and proper closing. If you have a single-spring assembly, the distance along the torsion tube from the spring cone to one drum is longer than to the other drum, which allows a bit more twist to one side than the other, and you may have to compensate with the setting of the drums.

Garage Door Service Co

×